
EA425HF-4~-12 チーズユニオン

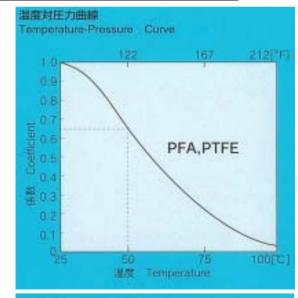
図面のWは四角対辺の寸法です。

 材 質
 ボディ
 : フッ素樹脂[PTFE]

 ・・・
 ナット
 : フッ素樹脂[ECTFE]

最高使用温度 · · · 100

適用チューブ ・・・ PFA・PTFEテフロン樹脂チューブ


耐薬品性

23 時

		ZO H寸								
品番	チューブサイス゛	最高圧力	サイズ(mm)					重量		
四田	T(mm)	(MPa)	Α	В	С	D	Е	F	W	(g)
EA425HF-4	4	0.9	30	15	11	7	3	10	8	4.4
EA425HF-6	6	0.8	38	19	14	10	4	12	10	7.6
EA425HF-8	8	8.0	50	25	18	12	6	17	14	21.4
EA425HF-10	10	0.6	60	30	21	16	8	22	17	38.0
EA425HF-12	12	0.5	72	36	25	18	10	26	22	70.4

ボディの外側をテーパー形状にした構造です。 ボディにチューブを差し込みナットを締め込む だけで高いシール性を保持します。 チューブ挿入時 ナット締め付け後

テーパー収縮シール方式とは?

使用温度時での使用可能圧力の求め方 上記、温度対圧力曲線より使用温度時の係数を求め、 表記、最高使用圧力値に乗じて下さい。 (例)10×8 PFAチューブ 50℃で使用する場合 係数 0.65 表記最高使用圧力-0.6MPa 0.6×0.65=0.39MPa

セッティングが簡単!! 特殊工具を用いないで

テーパーシール収縮方式

医工が可能な

ナットの締め付けについて

- 1. チューブをボディに差し込み、ナットを 手で締め付けます。
- 2. 手で軽く締め付けて、急に固くなったところから表記の回転数で締め付けます。(トルクレンチのご使用をお勧めします)
- 3. 右上資料 の締め付けトルク値も参考にして下さい。
- 4. 増締めが必要になった場合1/8~1/4回転 締め付けて下さい。

テュー TUB	ナットの締め付け			
ミリサイズ mm	インチサイズ inch	Tighten the nut number of turns		
3	1/B	1		
4	-			
6	1/4	1-1/4		
8	5/16			
10	3/B			
12	-			
	1/2	1-1/2		
13	-			
19	3/4			

注記)ボディを再施工する場合は上記の回転数 より約1/8~1/4回転多めに締め付けて 下さい。

締め付けトルク

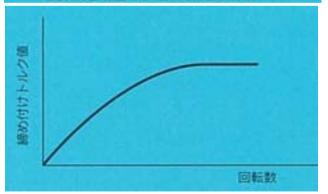
1. 締め付けトルクは種々の条件によって値が異なります。

当資料は参考値として御利用下さい。

2. 参考値の1.5倍以上では締め付けないで下さい。

ネジが破損することがあります。

ナット部の締め付けトルク Tightening torque for nuts


ナットの締め付けトルク値(参考値)

Tightening torque for nuts (Reference value)

77,750,000	ブサイズ * e Size	難め付けトルク値 Tightening Torque			
T	nm	N-m	kgf-cm		
3×2	3.18×1.6	0.05	0.5		
4×3	-	0.12	1.2		
6×4	6.35×4.3	0.23	2.3		
8×6	-	0.45	4.6		
10×8	9.53×6.3	0.8	8.2		
12×10	-	1.0	10.2		
-	12.7×9.5	1.1	11.2		
13×11	_	1.0	10.2		
19×16	19.05×15.88	1.7	17.3		

は船 1 PFAチューブを使用して選定したものです。

2チェーブの一般公園は表記のトルク園で販的付ければ延安されます。 3ナットの何め付け屋(四新数)とトルク園との間係は下頭のように、 あるトルク園(表記)から一定になる何可があります。

R. Rc(PT)管用テーバーネジ機種選択にあたっての注意

1.R. Rc(PT)ネジの漏洩原因

フッ素機脂継手で配管する場合、PTネジの接続箇所は 金属製品のものとは異なりシール性が劣ります。従っ て金属製のように漏洩を止めることは困難です。これ は以下の理由によるものです。

- ① 機械的強度が低い
- ② 温度による膨張率が大きい
- ③ 樹脂特有の応力緩和がある
- @ シール材が同材質である
- ⑤ 相手ネジの不均性の影響

2.漏洩防止対策

遍洩防止対策として、下記が挙げられます。

- ① R, Ro(PT)管用テーバーネジをねじ込んだ後、全間溶着する。
- ② 継手と一体化させた流体部品を使用する。
- ③ チューブ配管の接続にして直接継手を調節する。

漏洩で問題になる箇所の接続はできるだけ上記案を選 択することをお勧めします。